- 澤任訂制
- FST動物實驗器械
- 瑞士ideal-tek鑷子
- 瑞士Dumont鑷子
- Weller
- Techni-Tool
- 瑞士Rubis鑷子
- arosurgica
- Genesee Scientific
- Gilder Grids
-
Entegris
- WEICON
- ACCURIS
- AIMS
- RMC鉆石刀
- Sipel鑷子
- 德國WIHA
-
Si-Mat
- Jokari
- Circuitmedic
-
Glissando病理切片掃描儀
- KNIPEX(凱尼派克)
- Swann-morton
- Cellpoint Scientific
- Swanstrom
- All-spec
-
新華器械
- Excelta
- MENDA
- MEISEI
- Erem
- Regine
-
OPTRASCAN病理掃描儀
- Benchmark
-
IDEAL
- 大龍儀器
- 五洋醫(yī)療
- Hozan(寶山)
- 3M
- Stoelting
- Roboz
-
Diatome鉆石刀
- Fine Science Tools
- PLATO
- NanoSoft
-
Avantama
-
PSI打擊器及配件
- Aptum
- xuron
- SPI
- ASI Instruments
-
上海一恒
-
上海雷磁
- Quantifoil
- 上海方需
- 蘇州六六
-
Hamilton
- ISMART
-
顯微鏡
-
Bonllmann
- AVEN
- 塔望科技
-
瑞典Haglof激光測距儀
- STILLE
-
美國安維迪
- 德國貝朗蛇牌
- Medline
-
蛋白純化系統(tǒng)
-
OHAUS奧豪斯
- 康博特森
- Ossila
-
賽寧(蘇州)生物
- Bernstein
- 潔盟清洗機(jī)
-
Ted Pella
-
晶圓切割
-
Omniprobe FIB全鎢取樣針
-
新產(chǎn)品
-
矩陣
-
器械盒
-
切割套裝
-
手套
-
樣品盒
-
吸筆及吸盤
-
晶圓及晶圓盒
-
樹脂及耗材
-
金剛石懸浮液
-
實驗室樣品瓶及杯子
-
實驗室防護(hù)
-
石蠟
-
移液器及管
-
離心管及支架
-
計時器
-
玻片儲存盒
-
焊接棒
-
微型小鏟
-
夾持器及微針
-
耳標(biāo)及耗材
-
縫合夾及縫合針
-
放大鏡
-
止血鉗
-
氮化硅膜
-
耗材
-
導(dǎo)電膠及膠帶
-
骨剪及剪刀
-
膠帶及標(biāo)簽
-
顯微載玻片
-
碳粉及碳棒
-
切片機(jī)刀片
-
切片模具
-
電鏡載網(wǎng)
-
刀類
-
化學(xué)生物制樣
-
組織標(biāo)記染料
-
鉗子
-
樣品臺
-
拋光布
-
藍(lán)寶石基片
-
吸筆
-
打孔器
-
云母片
-
AFM用品
-
鉆石劃線筆
-
樣品臺盒
-
筆
-
儀器
-
晶圓鉗
-
晶圓切割
- DSI
- Keller
-
Smart Tweezers
- 瑞士PB
-
Microscopes Internat...
- Lattice Gear
-
凱氏定氮儀
- lindstrom
- 美國EMS
-
1-material
-
儀器
- realisticflies
- Boive
- Zivic
Luminosyn? DPP-DTT
Luminosyn? DPP-DTT (also referred to as PDPP2T-TT-OD) is now available.
High molecular weight
Higher molecular weight offers higher charge mobility
High purity
DPP-DTT is purified via Soxhlet extraction with methanol, hexane and chlorobenzene under an argon atmosphere
Batch-specific GPC data
Have confidence in what you are ordering; batch-specific GPC data for your thesis or publications
Large quantity orders
Plan your experiments with confidence with polymers from the same batch
OFET and Sensing Applications
The exceptional high mobility of this polymer of up to 10 cm2/Vs [2] via solution-processed techniques, combined with its intrinsic air stability (even during annealing) has made PDPP2T-TT-OD of significant interest for OFET and sensing purposes.
While the highest mobilities require exceptional molecular weights of around 500 kD (and with commensurate solubility issues), high mobilities in the region of 1-3 cm2/Vs can still be achieved with good solution-processing at around 250 kD. As such, we have made a range of molecular weights available to allow for different processing techniques.
In our own tests, we have found that by using simple spin-coating onto an OTS-treated silicon substrate (using our prefabricated test chips), high mobilities comparable to the literature can be achieved (1-3 cm2/Vs). Further improvements may also be possible with more advanced strain-inducing deposition techniques.




Photovoltaic Applications
Although shown as a promising hole-mobility polymer for OFETs, when used as the donor material in a bulk heterojunction photovoltaic (with PC70BM as the acceptor), initial efficiencies of 1.6% were achieved for DPP-DTT [3]. The low device metrics were attributed to poor film morphology. However, a higher efficiency of 6.9% was achieved by using thicker film (220 nm) [4].
PDPP2T-TT-OD has also recently been used successfully as an active-layer dopant material in PTB7-based devices [5]. An improvement in device performance was observed, with average efficiencies increasing from 7.6% to 8.3% when the dopant concentration of DPP-DTT was 1 wt%. The use of DPP-DTT as a high-mobility hole-interface layer for perovskite hybrid devices has also been investigated [6].
Synthetic route
DPP-DTT synthesis: DPP-DTT was synthesised by following the procedures described in [2] and [3] (please refer to the following references):
With 2-thiophenecarbonitrile and dimethyl succinate as starting materials in t-amyl alcohol, it gave 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione. Alkylation of 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione with 2-octyldodecylbromide in dimethylformamide afforded 3,6-bis(thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione. Further bromination gave 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (M1).

Further reaction of M1 with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene (M2) under Stille coupling conditions gave the target polymer DPP-DTT, which was further purified via Soxhlet extraction with methanol, hexane and then chloroform.

General Information
CAS number | 1260685-66-2 (1444870-74-9) |
Chemical formula | (C60H88N2O2S4)n |
HOMO / LUMO | HOMO = -5.2 eV, LUMO = -3.5 eV [2] |
Synonyms |
|
Solubility | Chloroform, chlorobenzene and dichlorobenzene |
Classification / Family | Bithiophene, Thienothiophene, Organic semiconducting materials, Low band-gap polymers, Organic photovoltaics, Polymer solar cells, OFETs |
