- 澤任訂制
- FST動物實驗器械
- 瑞士ideal-tek鑷子
- 瑞士Dumont鑷子
- Weller
- Techni-Tool
- 瑞士Rubis鑷子
- arosurgica
- Genesee Scientific
- Gilder Grids
-
Entegris
- WEICON
- ACCURIS
- AIMS
- RMC鉆石刀
- Sipel鑷子
- 德國WIHA
-
Si-Mat
- Jokari
- Circuitmedic
-
Glissando病理切片掃描儀
- KNIPEX(凱尼派克)
- Swann-morton
- Cellpoint Scientific
- Swanstrom
- All-spec
-
新華器械
- Excelta
- MENDA
- MEISEI
- Erem
- Regine
-
OPTRASCAN病理掃描儀
- Benchmark
-
IDEAL
- 大龍儀器
- 五洋醫(yī)療
- Hozan(寶山)
- 3M
- Stoelting
- Roboz
-
Diatome鉆石刀
- Fine Science Tools
- PLATO
- NanoSoft
-
Avantama
-
PSI打擊器及配件
- Aptum
- xuron
- SPI
- ASI Instruments
-
上海一恒
-
上海雷磁
- Quantifoil
- 上海方需
- 蘇州六六
-
Hamilton
- ISMART
-
顯微鏡
-
Bonllmann
- AVEN
- 塔望科技
-
瑞典Haglof激光測距儀
- STILLE
-
美國安維迪
- 德國貝朗蛇牌
- Medline
-
蛋白純化系統(tǒng)
-
OHAUS奧豪斯
- 康博特森
- Ossila
-
賽寧(蘇州)生物
- Bernstein
- 潔盟清洗機
-
Ted Pella
-
晶圓切割
-
Omniprobe FIB全鎢取樣針
-
新產(chǎn)品
-
矩陣
-
器械盒
-
切割套裝
-
手套
-
樣品盒
-
吸筆及吸盤
-
晶圓及晶圓盒
-
樹脂及耗材
-
金剛石懸浮液
-
實驗室樣品瓶及杯子
-
實驗室防護
-
石蠟
-
移液器及管
-
離心管及支架
-
計時器
-
玻片儲存盒
-
焊接棒
-
微型小鏟
-
夾持器及微針
-
耳標(biāo)及耗材
-
縫合夾及縫合針
-
放大鏡
-
止血鉗
-
氮化硅膜
-
耗材
-
導(dǎo)電膠及膠帶
-
骨剪及剪刀
-
膠帶及標(biāo)簽
-
顯微載玻片
-
碳粉及碳棒
-
切片機刀片
-
切片模具
-
電鏡載網(wǎng)
-
刀類
-
化學(xué)生物制樣
-
組織標(biāo)記染料
-
鉗子
-
樣品臺
-
拋光布
-
藍寶石基片
-
吸筆
-
打孔器
-
云母片
-
AFM用品
-
鉆石劃線筆
-
樣品臺盒
-
筆
-
儀器
-
晶圓鉗
-
晶圓切割
- DSI
- Keller
-
Smart Tweezers
- 瑞士PB
-
Microscopes Internat...
- Lattice Gear
-
凱氏定氮儀
- lindstrom
- 美國EMS
-
1-material
-
儀器
- realisticflies
- Boive
- Zivic
Chemical Formula: | C6H19NSi2 |
CAS#: | 999-97-3 |
Formula Weight: | 161.4 |
RTECS#: | JM9230000 |
Apperance: | Liquid |
Color: | Clear |
Odor: | Not available |
Boiling Point: | 127° C / 260° F |
Melting Point: | -80° / -112° F |
Specific Gravity (H2O = 1): | 0.774 |
Refractive Index: | 1.408 |
Solubility in Water: | Not available |
Shipping Information
UN #: | 2924 | |
Proper Shipping Name: | Flammable liquid, N.O.S. | |
Hazard Class: | 3 | |
Packing Group: | II |
This interesting liquid product can be, at times, a good substitute for critical point drying CPD, especially for those laboratories not having available a good critical point dryer. Because of its generally rapid infiltration, it is ideal for the preparation of insect tissue. However, do not expect the results, in general, to be as one would get with the use of a good critical point dryer. Remember, we "recommend" the use of Hexamethyldisilazane only when a good operating CPD unit is just not available. Until recently, the main application for HMDS has been in life science microscopy but in more recent years, interesting applications in materials science have been found.
Who would find the HMDS approach useful?
Workers who are doing their SEM examination at relatively low magnifications or are working with samples, known to not possess any fine structure that would otherwise be seen at the magnifications of interest would probably be those most likely to find the HMDS generated results to be the most acceptable relative to critical point drying. For example, excellent results have been reported for pollen in the publication: "Hexamethyldisilazane as a Drying Agent for Pollen", Biotechnic & Histochemistry 69, 192-198 (1994).
Known limitations of HMDS:
Naturally, the seriousness of these limitations might be in the eyes of the beholder. But we would point out that when HMDS is used (instead of critical point drying), one does experience shrinkage of tissues, especially of connective tissues. HMDS is caustic, and flammable, and should be used only in a fume hood. Some might characterize the use of HMDS as being outright "nasty" when compared to the use of CPD.
Other miscellaneous information:
For relatively larger samples, the quality of the final result can be enhanced if the final dried sample is put in a vacuum oven at 55-60°C for several hours to be certain that that sample is indeed completely dry before gold coating, prior to SEM examination. If moisture is still diffusing out of the sample during sputter coating, not much gold will deposit and the sample will end up without the desired surface conductivity.
Silanization of glass surfaces:
Glass microscope slides can be made hydrophobic using SPI-Chem HMDS. The procedure is simple and works quite well. Place the slides, separated, in a wide mouth glass jar preferable with a PTFE lined cap. Add a few drops of the HMDS which will then vaporize in the sealed jar reacting with the surface of the slides. Better results are obtained if this is done while keeping the jar at 70° for twelve hours, but with the cap slightly ajar.
At the end of the twelve hours, remove the slides. Water droplets will now "bead up" on the slide surfaces. The layer responsible for the hydrophobic behavior with we less than one nm in thickness and will also be completely invisible to the eye.
Applications in semiconductor technology:
HMDS is an outstanding adhesion promoter especially in terms of improving the adhesion of photoresist to the wafer surface. It is deposited on the wafer surface prior to the deposition of resist.
Applications in nanotechnology:
The preparation of non-interacting and non-touching nanoparticles is one of the biggest challenges faced by workers in this field of research. For those interested in the controlled synthesis of non-aggregated nanoparticles with diameters between 1 and 50 nm, one can synthesize nanosize SiO2 particles from hexamethyl-disiloxane (HMDS) as precursor and oxygen as the oxidizing agent.